methane on these surfaces. It appears from Kemball's researches ${ }^{8}$ that methane permits a similar differentiation between metal surfaces and their capacity to chemisorb gases.

Acknowledgment.-This work has been made possible by a generous grant from Baker and Co. to the James Forrestal Research Center at Princeton which is being used for work in catalysis by
(8) C. Kemball. Proc. Roy. Soc. (London), A217. 376 (1953).
platinum metals and for studies in the metal science of these elements. Our thanks are due especially to Mr. Chas. W. Engelhard for financial support, and to Dr. E. F. Rosenblatt and to Dr. W. Cohn for assistance in the preparation and provision of catalytic materials. We express our thanks also to Dr. M. Boudart for supervision and criticism of this work.
Princeton, N. J.
[Contribution from the Frick Chemical Laboratory, Princeton University]

Reduced Equation for Viscoelastic Behavior of Amorphous Polymers in the Transition Region ${ }^{1}$

By A. V. Tobolsky and E. Catsiff
Received February 6. 1954

A law of corresponding states is proposed for the viscoelastic properties of amorphous polymers in the transition region. Tables are presented from which the modulus-temperature curve (modulns measured after any fixed time t_{1}) (an be constructed for many polymers.

Introduction

In previous publications, ${ }^{2.3}$ it was proposed that the composite stress-relaxation curves of amorphous polymers in the transition region could be adequately reproduced by the equation

$$
\begin{equation*}
\frac{\log E_{\mathbf{r}}(t / K)-\frac{1}{2} \log E_{1} E_{2}}{\frac{1}{2} \log \left(E_{1} / E_{2}\right)}=-\operatorname{erf}(h \log t / K) \tag{1}
\end{equation*}
$$

where
$E_{\mathrm{r}}(t / K)=E_{\mathrm{r} . \mathrm{T}}(t)=$ stress $/$ strain in a sample maintained at a constant small strain for a time t at a temp. T
$K=$ characteristic relaxation time, a function of temp. only for a given polymer
$E_{1}=\underset{\text { dynes } / \mathrm{cm}^{2} \text {) }}{\text { glassy }}$ modulus (usually about $10^{10.5}$ dynes/cm. ${ }^{2}$)
$E_{2}=$ quasistatic rubbery modulus (usually between 10^{7} and 10^{8} dynes/cm. ${ }^{2}$)
$h=$ a parameter characteristic of each polymer
erf $x=2 \pi^{-1 / 2} \int_{0}^{x} \exp \left(-x^{2}\right) \mathrm{d} x$. the error integral ${ }^{4}$
Furthermore, it was shown that the temperature dependence of K for the polymers studied to date was

$$
h \log K_{\mathrm{R}}=\mathrm{f}\left(T_{\mathrm{R}}\right)
$$

with $\mathrm{f}\left(T_{\mathrm{R}}\right)$ very nearly the same for all polymers. $\mathrm{f}\left(T_{\mathrm{R}}\right)$ is tabulated in Table I.
$K_{\mathrm{R}}=K / K_{\mathrm{d}}$
$K_{\mathrm{d}}=K$ at T_{d}
$T_{\mathrm{R}}=T / T_{\mathrm{d}}$
$T_{\mathrm{d}}=$ distinctive temp. which is related to. if not equal to. the glass transition temp.
The Reduced Equation of Viscoelastic Behavior.
-Just as it is very convenient to express compressi-
(1) Part III of a series on elastoviscous properties of amorphous polymers in the transition region.
(2) J. Bischoff. E. Catsiff and A. V. Tobolsky. This Journat., 74. 3378 (1952). hereinafter called paper I .
(3) E. Catsiff and A. V. Tobolsky. J. Appl. Phys., in press. hereiuafter called paper II.
(4) Tables of the error integral may be found in Jahnke and Emde. "'Tables of Functions." B. G. Teubner. Leipzig and Berlin. 1933: J. W. Mellor. "Higher Mathematics for Students of Chemistry and Physics." Longrans. Green and Co.. London, 1909.

Table I

Reducen-Temperature Dependence of $\mathfrak{f}\left(T_{\text {R }}\right)$			
$T_{\text {R }}$	$f(T R)$	TR	$f\left(T_{R}\right.$)
0.940	1.62	1.000	0.00
. 945	1.55	1.005	-. 18
. 950	1.46	1.010	- . 34
. 955	1.36	1.015	- . 50
. 960	1.25	1.020	- . i .3
. 965	1.11	1.025	- . 78
. 970	0.98	1.030	- . 92
. 975	. 84	1.035	-1.06
. 980	. 69	1.040	-1.18
. 985	. 52	1.045	-1.31
. 990	. 36	1.050	-1.43
. 995	. 18		

bility data of fluids in terms of reduced temperature, pressure and volume, it would also be very desirable to express the viscoelastic properties of amorphous substances in terms of reduced variables. In this case, the most important reduced variable is the reduced temperature $T_{\mathrm{R}}=T / T_{\mathrm{d}}$. Qualitatively, the viscoelastic properties of amorphous polymers (in the transition region) are very similar at the same value of the reduced temperature. It is the purpose of this paper to establish this relation in a quantitative sense.

Equation 1 is essentially a five-parameter reduced equation for viscoelastic behavior of amorphous polymers in the transition region. However, it is not the simplest reduced equation possible. By comparing the values of h and T_{d} obtained in papers I and II on six amorphous polymers, it becomes clear that $h T_{\mathrm{d}}=100(\pm 3.7)$ (in ${ }^{\circ} \mathrm{K}$.). Also $\log K_{d}=-1.45(\pm 0.12)$ (in hours).

If these values are substituted in equation 1 the following is obtained

$$
\begin{array}{r}
Y=\frac{\log E_{\mathrm{r} . \mathrm{T}(t)-\frac{1}{2} \log E_{1} E_{\mathrm{2}}}^{\frac{1}{2} \log \left(F_{1} / E_{2}\right)}=-\operatorname{erf}\left[\begin{array}{l}
100 \\
T_{\mathrm{d}}
\end{array}(\operatorname{lng} t+\right.}{\left.1.4[) \cdots \mathrm{f}\left(T / T_{\mathrm{A}}\right)\right]} \tag{2}
\end{array}
$$

Table II

Values of $X=\left(100 / T_{\mathrm{d}}\right)($ Log $t+1.45)$										
T. ${ }_{\text {i. }}{ }^{\circ} \mathrm{CH}$	-70	-60	-50	-40	-30	-20	-10	0	10	20
10^{-6}	-2.24	-2.13	-2.04	-1.95	-1.87	-1.80	-1.73	-1.665	-1.605	-1.55
$10^{-5.5}$	-1.99	-1.90	-1.82	-1.74	-1.66	-1.60	-1.54	-1.48	-1.43	-1.38
10^{-5}	-1.745	-1.66	-1.59	-1.52	-1.46	-1.40	-1.35	-1.30	-1.25	-1.21
$10^{-4.5}$	-1.50	-1.43	-1.37	-1.31	-1.25	-1.20	-1.16	-1.12	-1.08	-1.04
10^{-4}	-1.25	-1.195	-1.14	-1.09	-1.05	-1.01	-0.97	-0.93	-0.90	-0.87
$10^{-3.5}$	-1.01	-0.96	-0.92	-0.88	-0.84	-0.81	-. 78	-. 75	- . 725	$-.70$
10^{-3}	-0.76	- . 725	-. 695	-. 665	- . 64	-. 61	-. 59	-. 57	-. 55	-. 53
$10^{-2.55 \%}$	- .545	- . 52	-. 495	-. 47	-. 455	-. 44	-. 42	-. 405	-. 39	-. 38
$10^{-2.5}$	- . 52	- . 49	-. 47	-. 45	- . 43	-. 415	-. 40	-. 38	-. 37	-. 36
0.010)	- . 27	-. 26	-. 25	-. 24	-. 23	-. 22	- . 21	-. 20	-. 19	-. 19
0316	-. 025	-. 02	-. 02	- . 02	- . 02	- . 02	- . 02	-. 02	-. . 02	-. 02
.100)	. 22	. 21	20	. 19	. 186	. 18	. 17	. 165	. 16	. 15
. 316	. 47	. 445	43	. 41	. 39	. 375	. 36	. 35	. 335	. 32
1.000	. 71	. 68	. 65	. 62	. 60	. 57	. 55	. 53	. 51	. 495
3.162	. 96	. 91	. 87	. 835	. 80	. 77	. 74	.715	. 69	. 665
10.00	1.205	1.15	1.10	1.05	1.01	. 97	. 93	. 895	. 865	. 835
31.62	1.45	1.38	1.32	1.26	1.21	1.16	1.12	1.08	1.04	1.01
100.0	1.695	1.62	1.55	1.48	1.42	1.36	1.31	1.26	1.22	1.18
316.2	1.94	1.85	1.77	1.69	1.62	1.56	1.50	1.445	1.39	1.35
10^{3}	2.185	2.08	1.99	1.91	1.83	1.76	1.69	1.63	1.57	1.52
$10^{3.5}$	2.43	2.32	2.22	2.12	2.04	1.955	1.88	1.81	1.75	1.69
10^{4}	2.68	2.56	2.44	2.34	2.24	2.15	2.07	1.99	1.92	1.86
$10^{4.5}$	2.92	2.79	2.67	2.55	2.44	2.35	2.26	2.18	2.10	2.03
10^{5}	3.17	3.02	2.89	2.76	2.65	2.545	2.45	2.36	2.28	2.20
$10^{5.5}$	3.42	3.26	3.12	2.98	2.86	2.74	2.64	2.54	2.45	2.37
10^{6}	3.866	3.49	3.34	3.19	3.06	2.94	2.83	2.72	2.63	2.54
30	40	50	60	70	80	90	100	110	120	130
-1.50	-1.45	-1.41	-1.36	-1.32	-1.29	-1.25	-1.22	-1.19	-1.15	-1.13
-1.34	-1.29	-1.25	-1.21	-1.18	-1.145	-1.11	-1.09	-1.06	-1.03	-1.00
-1.17	-1.13	-1.10	-1.06	-1.03	-1.005	-0.975	-0.95	-0.925	-0.90	-0.88
-1.01	-0.97	-0.94	-0.915	-0.89	-0.86	-. 84	-. 82	-. 795	-. 775	-. 755
-0.84	-. 815	-. 79	-. 765	-. 74	$-.72$. 70	-. 68	-. 665	-. 65	-. 63
-. 675	-. 655	-. 635	-. 615	-. 60	-. 58	-. 565	-. 55	-. 535	-. 52	-. 51
-. 51	-. 495	-. 48	-. 465	$-.45$. 44	-. 43	-. 415	. 40	-. 39	-. 38
-. 365	-. 35	-. 34	-. 33	-. 32	-. 31	-. 305	-. 295	-. 29	- . 28	- . 27
-. 35	-. 335	-. 325	-. 315	-. 305	-. 30	- . 29	-. 28	. . 27	-. 265	- . 26
-. 18	- . 175	-. 17	-. 165	- . 16	-. 16	-. 15	-. 15	-. 14	-. 14	-. 135
-. 02	- . 02	-. 015	-. 015	-. 015	-. 01	-. 01	-. 01	-. 01	-. 01	-. . 01
. 15	14	. 14	. 135	. 13	13	. 12	. 12	. 12	. 115	. 11
. 31	. 30	29	. 285	. 28	27	. 26	. 255	. 25	. 24	. 235
48	46	. 45	. 435	. 42	. 41	. 40	. 39	. 38	. 37	. 36
. 64	62	. 60	. 585	. 57	. 55	. 535	. 52	. 51	. 495	. 485
. 81	. 78	76	. 735	. 71	. 69	. 675	655	. 64	. 62	. 61
. 97	. 94	. 91	. 885	. 86	835	. 81	. 79	. 77	. 75	. 73
1.14	1.10	1.07	1.03	1.00	975	. 95	. 925	. 90	. 87	. 855
1.30	1.26	1.22	1.18	1.15	1.12	1.09	1.06	1.03	1.00	0.98
1.47	1.42	1.37	1.33	1.295	1.26	1.22	1.19	1.16	1.13	1.10
1.63	1.58	1.53	1.48	1.44	1.40	1.36	1.33	1.29	1.26	1.23
1.80	1.74	1.68	1.63	1.585	1.54	1.50	1.46	1.42	1.38	1.35
1.96	1.90	1.84	1.78	1.73	1.68	1.64	1.60	1.55	1.51	1.47
2.13	2.06	1.99	1.93	1.875	1.82	1.77	1.73	1.68	1.64	1.60
2.29	2.22	2.15	2.08	2.02	1.97	1.91	1.86	1.81	1.76	1.72
2.46	2.38	2.30	2.23	2.16	2.11	2.05	1.99	1.94	1.89	1.85

Equation 2 is the reduced equation for viscoelastic behavior of the six polymers studied thus far; the relaxation modulus at any time and temperature, $E_{\mathrm{r} . \mathrm{T}}(t)$, can be obtained from equation 2 and Table I provided that T_{d}, E_{1} and E_{2} are known. Since E_{1} and E_{2} do not differ very much from one polymer to another, the variation of $E_{\mathrm{r}, \mathrm{T}}(t)$ from one polymer to another should depend mainly on
T_{d}. From $E_{\mathrm{r}, \mathrm{T}}(t)$ all other viscoelastic properties can be derived.

The extent to which equation 2 is a valid one for the six polymers studied thus far is shown in Fig. 1. In this figure the new variable Z, related to Y of equation 2 as shown below, was plotted as ordinate on probability paper (e.g., Codex 32,451) in the form

$$
\begin{equation*}
Z=\frac{1}{2}(1+Y) \times 100=\frac{\log E_{r \cdot T}(t)-\log E_{2}}{\log E_{1}-\log E_{2}} \times 100 \tag{2a}
\end{equation*}
$$

The argument of the error integral function in equation 2 was plotted as abscissa using the experimentally determined values of T_{d}. The ordinate scale of probability paper is so designed that such a plot should give a straight line of fixed slope if the experimental data are described by equation 2 . This is shown by a heavy black line in the figure.

Fig. 1.-Test of validity of three-parameter reduced equation for viscoelastic behavior of amorphous polymers in transition region.

Figure 1 indicates that equation 2 represents a fairly good approximation for the properties of the polymers studied thus far. It is interesting to ask whether this same equation will be applicable to other polymers as well. For this purpose we show how the modulus-temperature curves (measured at constant strain after a fixed period of time, e.g., 10 seconds) can be simply obtained from equation 2 for a polymer of distinctive temperature T_{d}, or conversely, how the experimental modulus-temperature curves for any polymer can be compared with equation 2.
Modulus-Temperature Curves.-In order conveniently to construct the modulus-temperature curves (modulus measured at constant strain after a fixed time t_{1}) we have designed two tables (Tables II and III) such that

$$
\begin{equation*}
\frac{\log E_{\mathrm{r} . \mathrm{T}}\left(t_{1}\right)-\log E_{2}}{\log E_{1}-\log E_{2}} \tag{3}
\end{equation*}
$$

can be obtained as a function of T for polymers of different values of T_{d} which obey equation 2 .

To use these tables, one first determines, from Table II, the quantity $X=100 / T_{\mathrm{d}}\left(\log t_{1}+1.45\right)$ for the appropriate values of T_{d} and t_{1}. Then, in Table III, one looks up X and the desired $T_{\mathrm{R}}(=$ T / T_{d}) and finds the quantity desired.

In this manner, a series of modulus-temperature curves (after 10 seconds stress-relaxation) were computed for polymers having T_{d} 's ranging from -70 to 130°. These curves are shown in Figs. 2 and 3. It is noteworthy that polymers with a low glass transition region also have a narrow transition range, so that the change in properties of a useful

low-temperature rubber at its glass transition is even more striking than the change in properties which conventional thermoplastics undergo on heating.

Determination of T_{d} from Modulus-Temperature Curves.-In practice, one is likely to be faced with the problem of determining T_{d} for a given polymer. The modulus-temperature curve is a convenient method for this. If the modulus-temperature curve was obtained at $t_{1}=K_{\mathrm{d}}=127$ seconds, T_{d} would be identical with T_{50}, the temperature at which $\left[\log E_{\mathrm{r} . \mathrm{T}}\left(t_{1}\right)-\log E_{2}\right] /\left(\log E_{1}-\right.$ $\log E_{2}$) is equal to 50%. T_{50} is easily determined from an enlarged plot of the modulus-temperature curve. Shorter times, e.g., 5 or 10 seconds, are preferable for speedy determination of T_{d}. For a given T_{d}, T_{50} is a function of t_{1}. We can derive a simple expression for $\Delta=T_{50}-T_{\mathrm{d}}$ for any value of t_{1} by noting that when $\left[\log E_{\mathrm{r}, \mathrm{T}}\left(t_{1}\right)-\log E_{2}\right] /$ $\log E_{1}-\log E_{2}=0.50$

$$
\begin{equation*}
\frac{100}{T_{\mathrm{d}}}\left(\log t_{1}+1.45\right)=\mathrm{f}\left(T_{50} / T_{\mathrm{d}}\right)=\mathrm{f}\left(1+\Delta / T_{\mathrm{d}}\right) \tag{4}
\end{equation*}
$$

In paper $\mathrm{I},{ }^{2}$ we tentatively approximated $\mathrm{f}\left(T / T_{\mathrm{d}}\right)$ as a linear function of T / T_{d}, which decreases when T / T_{d} increases; also $\mathrm{f}\left(T / T_{\mathrm{d}}\right)=0$ when $T / T_{\mathrm{d}}=1$. So we can write $\mathrm{f}\left(1+\Delta / T_{\mathrm{d}}\right)=-\left(\Delta / T_{\mathrm{d}}\right) \mathrm{g}\left(\Delta / T_{\mathrm{d}}\right)$, where $\mathrm{g}\left(\Delta / T_{\mathrm{d}}\right)$, which is given in Table IV, is nearly constant. Making this substitution in equation 3, one obtains

$$
\begin{equation*}
\Delta=-\frac{100}{\mathrm{~g}\left(\Delta / T_{\mathrm{d}}\right)}\left(\log t_{1}+1.45\right) \tag{5}
\end{equation*}
$$

Table IV
Values of $\mathrm{g}\left(\Delta / T_{\mathrm{d}}\right)$

Δ / T_{d}	$\mathrm{g}\left(\Delta / T_{\mathrm{d})}\right.$	Δ / T_{d}	$\mathrm{g}\left(\Delta / T_{\mathrm{d}}\right)$
-0.060	27.0	0.000	36.0
-.055	28.2	.005	36.0
-.050	29.2	.010	34.0
-.045	30.2	.015	33.3
-.040	31.25	.020	31.5
-.035	31.7	.025	31.2
-.030	32.7	.030	30.7
-.025	33.6	.035	30.3
-.020	34.5	.040	29.5
-.015	34.7	.045	29.1
-.010	36.0	.050	28.6
-.005	36.0		

To use equation 4, it is necessary to proceed by trial-and-error. Knowing T_{50}, one assumes a likely value for $g\left(\Delta / T_{\mathrm{d}}\right)$, e.g., 36.0 , and solves for Δ. This gives a tentative value of T_{d}, from which a better value of $g\left(\Delta / T_{\mathrm{d}}\right)$ can be found, and so on.

If equation 2 describes satisfactorily the viscoelastic behavior of an amorphous polymer, this fact can be conveniently ascertained from an experimental modulus-temperature curve. The procedure would be to determine T_{d} as described in the preceding paragraph, construct the hypothetical modulus-temperature curve corresponding to this T_{d} (using Tables II and III), and compare the computed and the experimental values.
Equation 4 shows that the choice of a different time scale causes a shift of the modulus-temperature curve along the temperature axis approximately proportional to log time. This is another

Fig. 2.-Modulus-temperature curves at 10 seconds for amorphous polymers having T_{d} below room temperature.

Fig. 3.-Modulus-temperature curves at 10 seconds for amorphous polymers having T_{d} above room temperature.
manifestation of the time-temperature superposition principle which has proved so fruitful in constructing composite stress-relaxation and dynamic modulus curves. Modulus-temperature curves on the same polymer taken at different times are very nearly parallel.

One difficulty that remains is that of making short-time stress-relaxation determinations to obtain the necessary modulus-temperature information. Many commercially available modulimeters depend on a short-time creep test, e.g., in bending or torsion. Presumably, there exists a simple approximate relation between creep modulus and stressrelaxation modulus. ${ }^{5}$ No adequate experimental proof of this relation in the transition region has been published, however.

Maximum Apparent Heat of Activation for Viscoelastic Behavior.-Another consequence of equarion 2 is the existence of a simple relationship between T_{d} and $\left(\Delta H_{\mathrm{Act}}\right)_{\text {max }}$ the maximum apparent activation energy for stress-relaxation. The apparent activation energy is calculated from the Arrhenius equation

$$
\begin{equation*}
\Delta H_{\text {Act }}=2.303 R \frac{\mathrm{~d} \log K}{\mathrm{~d}(1 / T)} \tag{5}
\end{equation*}
$$

Making the appropriate substitutions gives (since K_{d} is constant)
$\Delta H_{\text {Act }}=2.303 R T_{\mathrm{d}} \frac{\mathrm{d} \log K_{\mathrm{R}}}{\mathrm{d}\left(1 / T_{\mathrm{R}}\right)}=\frac{2.303 R T_{\mathrm{d}}{ }^{2}}{100} \times \frac{\mathrm{d} f\left(T_{\mathrm{R}}\right)}{\mathrm{d}\left(1 / T_{\mathrm{R}}\right)}$

By definition the maximum value of $\Delta H_{\text {Act }}$ is found when $T_{\mathrm{R}}=1$, at which point
$\frac{\mathrm{df}\left(T_{\mathrm{R}}\right)}{\mathrm{d}\left(1 / T_{\mathrm{R}}\right)}=-\mathrm{g}\left(\Delta / T_{\mathrm{d}}\right)_{\text {max }} \times \frac{\mathrm{d}\left(T_{\mathrm{R}}-1\right)}{\mathrm{d}\left(1 / T_{\mathrm{R}}\right)}=\mathrm{g}\left(\Delta / T_{\mathrm{d}}\right)_{\text {max }}=$
(5) T. Alfrey. Jr., "Mechanical Behavior of High Polymers." Interscience Publishers; Inc., New York. N. Y., 1948. p. 553.

Hence

$$
\begin{equation*}
\left(\Delta H_{\mathrm{Act}}\right)_{\max }=\frac{2.303 R T_{\mathrm{d}}^{2}}{100}(36.0)=1.65 T_{\mathrm{d}^{2}} \tag{8}
\end{equation*}
$$

The validity of equation 8 is assessed in Table V, where experimental values of $\left(\Delta H_{\mathrm{Act}}\right)_{\max } / T_{\mathrm{d}}{ }^{2}$ have been collected. The data are taken from papers I^{2} and $\mathrm{II} .^{3}$ The average value of $\left(\Delta I_{\text {Act }}\right)_{\text {max }} / T_{\mathrm{d}}{ }^{2}$

Table V
Relationship of Maximum Apparevt Heat of Activation and Distinctive Temperature

Polymer	$\begin{gathered} \left(\Delta H_{\text {Act }}\right)_{\text {max }} \\ \text { keal. } \end{gathered}$	Td. ${ }^{\circ} \mathrm{K}$.	$\underset{\substack{\left(\Delta H_{\text {Act }}\right)_{\max } \\ \mathrm{d}_{\mathrm{d}}}}{ }$
Polymethyl methacrylate	300	384	2.03
Paracril 26	95.6	241.0	1.64
GR-S	85.0	220	1.75
60/40 Butadiene-styrene	101.9	237.1	1.81
50/50 Butadiene-styrene	99.0	250.8	1.57
30/70 Butadiene-styrene	140.4	28.5 .1	1.73

is $1.74(\pm 0.06)$. This suggests that the maximum value of $g\left(\Delta / T_{\mathrm{d}}\right)$ may be slightly greater than 36.0 , which is not unreasonable.

Discussion

If the viscoelastic properties of a wide variety of amorphous polymers in the transition region obey equation 2, it is clear that we have developed a kind of law of corresponding states for viscoelastic properties. In particular, the function Y should be identical for all polymers having the same 7_{d} independent of the structure of the polymer. We believe that this will indeed be found valid for many normal amorphous polymers, but will not be true for incompatible copolymers or polyblends.

Acknowledgment. We wish to thank the Office of Naval Research for support of this work under Contract No. N6 onr-27021, Project NR 330-02:3.
Princeton, Neif Jersey
[Contribution from the Chemical Laboratories of Harvard University]

The Polarography and Standard Potential of the Oxygen-Hydrogen Peroxide Couple

By David M. H. Kern
Received April 20. 1954

The generally accepted equation $\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}=\mathrm{H}_{2} \mathrm{O}_{2}$ for the first step in the polarographic reduction of oxygen has been confirmed in the $p \mathrm{H}$ range $6-14$ by potentiometric null-point measurements with the dropping mercury electrode in buffered hydrogen peroxide-oxygen mixtures. The couple is completely reversible for $p \mathrm{H}>11$. The standard potential was determined both by the above technique. and by measurements of the oxygen half-wave potential in sodium hydroxide solutions in a cell without liquid junction. The result was $E^{v}=+0.695 \pm 0.005 \mathrm{v}$. The mechanism of the reduction is briefly discussed.

The recent work of Hacobian ${ }^{1}$ on the a.c. polarography of oxygen has produced conclusive evidence of the reversibility of the first reduction step in unbuffered neutral and basic solutions. His observations were further confirmed by his discovery of an oxidation wave of hydrogen peroxide in dilute base. Heretofore, although reversible electron exchange between the oxygen molecule and the electrode has at times been postulated, ${ }^{2}$ the over-all process has consistently been stated to be highly irreversible in all media. ${ }^{3}$ This assumption was supported, at least in the $p \mathrm{H}$ range $1-10$, by the observation ${ }^{4}$ that the half-wave potential ($E_{1 / 2}$) of oxygen throughout this range is essentially independent of $p H$, while according to the accepted equation

$$
\begin{equation*}
2 \mathrm{H}^{+}+\mathrm{O}_{2}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2} \tag{1}
\end{equation*}
$$

for the over-all electrode reaction, reversibility would have led to a shift of 60 mv . per unit change in $p H$. On the other hand, the standard potential of this couple has been given by Latimer ${ }^{5}$ as +0.682 v . on the basis of data on reaction heats and

[^0]entropies, and a simple calculation shows that the overvoltage of the observed oxygen wave (generally placed at -0.05 v . vs. S.C.E.) rapidly diminishes as the solution becomes less acid until it disappears altogether in slightly basic solutions. Furthermore, Berl^{6} has shown that the electrode reaction is reversible at activated carbon electrodes in strongly basic solutions. Practically, the reversibility of the oxygen wave in basic solutions has been exploited because of its steep shape and well developed diffusion plateau, but the appropriate thermodynamic conclusions had never been drawn.

Hacobian found that analysis of the oxygen wave in neutral unbuffered solution gave a linear log plot with a 62 mv . slope, indicating a one-electron process. The \log plot analysis derives its validity from the thermodynamic current-voltage equation for the rising part of the wave, and this in turn is based on the assumption that the over-all electrode reaction is given by the expression

$$
\mathrm{A}+n \mathrm{e}^{-} \rightleftarrows \mathrm{B}
$$

where n is determined by the slope of the log plot and A and B are the diffusing species. In one mechanism proposed by Hacobian, B has a coefficient of $3 / 2$, and in the other the reaction involving the one electron is not the over-all process between the diffusing species. Consequently the slope of his plot cannot be used to support either mechanism. An attempt was made to reproduce the log plot of Hacobian in neutral $0.0 .3 \mathrm{Man}_{4} \mathrm{SO}_{4}$ (i) W. Berl, J. Electrochem. Soc. 83. $2: 53$ (1943).

[^0]: (1) S. Hacobian, Australian J. Chem.. 6, 211 (1953). The same conclusion was very briefly reported by Kalousek. Collection Czechoslav, Chem. Communs., 13. 105 (1948), on the basis of observations made by a simpler technique.
 (2) J. Heyrovsky. "Polarographie," Springer Verlag. Vienna. p. 78.
 (3) E.g., I. M. Kolthoff and J. J. Lingane. "Polarography." 2nd Ed., Vol. II, Interscience Pubishers. Inc.. New York. N. Y.. p. 555: M. v. Stackelberg. "Polarographische Arbeitsmethoden." Walter de Griyter and Co.. Berlin, p. 320.
 (4) I. Kolthoff and C. Miller. This Journal. 63. 1013 (1941).
 (5) W. Latimer, "Oxidation Potentiats," Prentice-Hall, Ins", New York. N. Y., 2nd ed., 1950. p. 43.

